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Agent-based modeling (ABM) techniques for studying human-technical systems face two important
challenges. First, agent behavioral rules are often ad hoc, making it difficult to assess the implications of
these models within the larger theoretical context. Second, the lack of relevant empirical data precludes
many models from being appropriately initialized and validated, limiting the value of such models for
exploring emergent properties or for policy evaluation. To address these issues, in this paper we present
a theoretically-based and empirically-driven agent-based model of technology adoption, with an
application to residential solar photovoltaic (PV). Using household-level resolution for demographic,
attitudinal, social network, and environmental variables, the integrated ABM framework we develop is
applied to real-world data covering 2004—2013 for a residential solar PV program at the city scale. Two

Keywords:
Agent-based modeling
Solar photovoltaic (PV)

Complex systems
Technology adoption
Social networks
Bounded rationality

applications of the model focusing on rebate program design are also presented.
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1. Introduction

Development of methods that better represent the bounded
rationality of economic agents (Gigerenzer and Selten, 2002),
largely arising due to heterogeneous information sets and heuristic
decision-making (Conlisk, 1996), is important for better under-
standing of the emergent phenomena that permeate economic
systems (Rubinstein, 1998; Sawyer, 2005). In this vein, recent years
have seen a spurt in the use of agent-based modeling (ABM) in a
range of economic and human-technical systems, including trans-
portation (Wang, 2005), land use (Evans and Kelley, 2004;
Robinson and Brown, 2009), market structure (Heppenstall et al.,
2006; Kirman and Vriend, 2001), transaction costs (Zhang et al.,
2011), strategic interactions in climate policy (Brede and De Vries,
2013; Gerst et al, 2013), and technology adoption (Schwoon,
2006), especially that of environmentally-friendly technologies
(Cantono and Silverberg, 2009; Gunther et al., 2001; Laciana and
Rovere, 2011; Lee et al., 2014; Mazhari et al., 2011; Schwarz and
Ernst, 2009; Tran, 2012; Van Vliet et al., 2010; Zhang and Nuttal,
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2012). ABM is attractive to researchers interested in studying the
evolution of complex human-technical systems because of the
flexibility afforded by ABM to describe in great detail the behavioral
as well as structural (policy; prices; infrastructure) aspects of the
system. However, ABM techniques for studying human-technical
systems face two important challenges (Durlauf, 2012; Windrum
et al,, 2007). First, agent behavioral rules in agent-based models
are often ad hoc — they do not necessarily build upon systematic
theories of behavior, thereby making it difficult to assess the im-
plications of these models within the larger theoretical context
(Durlauf, 2012; Feola and Binder, 2010). Second, the lack of relevant
empirical data precludes many models from being appropriately
initialized and validated against real-world data (Heppenstall et al.,
2006); this limits the value of such models for exploring emergent
properties or for policy evaluation. Thus, careful development of
agent behavioral model and of rich datasets and methods to enable
robust initialization and validation of agent-based models is
important.

1.1. Objectives

Our objective in this paper is to present an agent-based model of
technology adoption that systematically tries to address the
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challenges identified above regarding the theoretical and empirical
components of ABM. Using a uniquely rich and comprehensive
dataset covering 2004—2013, we build an agent-based model of the
adoption of residential solar photovoltaic (PV) systems in the city of
Austin (Texas, USA), which has a population of approximately
900,000. In addition to an empirically driven agent-interaction
model and a theoretically-driven behavioral model, we also ac-
count in great detail for the physical environment (irradiation, tree
cover, home size) and economic features (prices, subsidies, wealth)
that impact agent behavior, again using empirical data. We present
a detailed step-by-step construction of the different components of
the agent-based model, the process of initializing the model, and
setting up of the model parameters and variables in accordance
with the theoretical and empirical underpinnings of the system. We
also present methods for temporal and spatial validation of the
model along with the fitting and validation results. The emphasis is
to provide a high level of detail in the construction of the behavioral
model, data integration, and initialization procedures. These de-
tails, which are critical to making the model reproducible, are often
neglected (Grimm et al., 2010). Because agent-based models
intended for policy evaluation, predictive modeling, or the study of
emergent phenomena must go through rigorous model set-up and
empirical grounding, we hope that this paper will help facilitate the
development of agent-based models for energy technology adop-
tion in a more empirically-grounded fashion.

1.2. Applications

A key motivation in developing this framework is to allow for a
range of policy simulations that could inform decision-making of
policymakers and utility planners. To illustrate this potential, in
Section 4.2 we present two applications of the ABM framework
developed here. These policy scenarios are based on the following
more general questions of central importance to the designers of
solar programs, but the framework is generalizable across a suite of
technologies.!

1.2.1. Subsidy program design

Low-Income Solar Programs: Adopters of PV tend to be much
wealthier than average (Rai and McAndrews, 2012). This finding
has raised equity concerns in relation to publicly-funded rebates.
Programs like California's Single-Family Affordable Solar Housing
Program were created to address these concerns, but high cost and
long time-frames associated with solar PV adoption limit the ability
of program designs to experiment with different rebate offerings.
Using the framework developed here a range of targeted rebate
scenarios could be explored through ABM simulation experiments.

Rebate Levels and Adoption: Recent empirical findings on optimal
subsidy design suggest that when peer effects and learning-by-
doing effects are strong rebates should be front-loaded in order
to maximize adoption — larger rebates early on in the subsidy
program and declining over time are found to be more cost effective
(Dong, 2014; Van Benthem et al., 2008). These aggregate findings
could be validated in full-scale ABM simulations including two- or
multi-tiered rebates and by varying the rate at which the tiered
rebates change over the lifetime of a solar program. The key
outcome of interest is the elasticity of PV adoption: (i) what is the

! Our framework may be applied not only to solar PV but also to a range of other
consumer technologies. We provide the applications for the design of solar pro-
grams because the empirical components of our model are trained on granular data
from a solar program. Similar data on other technologies would enable studying the
adoption of those technologies as well. Furthermore, although not considered in
this paper, other simulation experiments could include exploration of different
information seeding strategies and location-based rebate targeting.

impact of changes in rebate level on PV adoption at the population-
scale? and (ii) how does this impact change with the underlying
installation base?

1.3. Main contributions

The main contributions of this paper are: (i) development of a
theoretically and empirically grounded integrated model for con-
sumer technology adoption, applied to residential solar PV, (ii)
highly granular description of the system, including behavioral,
social, and physical-economic environmental aspects at the
household level, (iii) development of new techniques to achieve a
population-wide, household-level empirical initialization, (iv)
development and application of multiple (temporal, spatial, and
demographic) external validation metrics, and (v) application of the
developed model for two ABM simulation experiments to explore
solar program design.

2. Background and related literature

Advances in computing power combined with the increasing
availability of granular data have enabled researchers to apply ABM
for analyzing a diverse set of problems (An, 2012; Matthews et al.,
2007). A particular area of growth in ABM applications has been to
model consumer technology adoption, a problem for which stan-
dard methods include conjoint analysis (Eggers and Eggers, 2011;
Green and Srinivasan, 1978), Bass diffusion models (Islam, 2014;
Islam and Meade, 2012; Shi et al., 2014), and dynamic discrete
choice (DDC) models (Berry, 1994). Modeling of consumer energy
technology adoption is particularly challenging because the nom-
inal economics (price) of the technology is only one determinant of
consumers' likelihood to adopt. Other behavioral and social phe-
nomenon such as decision heuristics, anchoring, path-dependence
(past experiences), risk aversion, trust-based information net-
works, and social norms are also quite important in understanding
energy-related consumer decision-making (Dietz et al., 2013;
Graziano and Gillingham, 2014; Kemp and Volpi, 2008; Margolis
and Zuboy, 2006; Stern, 1992; Wilson and Dowlatabadi, 2007).
DDC models are among the most sophisticated approaches for
analyzing consumer choice (McFadden, 2001). Unlike conventional
conjoint analysis, DDC models have a time component (multi-
period), allowing to factor intertemporal tradeoffs. Unlike Bass
diffusion models, the unit of analysis in DDC models is the indi-
vidual, thereby allowing the direct study of individual decision-
making processes on system outcomes. However, these predomi-
nant methods for modeling consumer technology adoption often
rely heavily on assumptions of utility maximizing actors who have
rational expectations about the future technological trajectory.
Furthermore, there are several other key challenges associated with
the representation of important behavioral, social, and spatial
phenomena in conventional models of energy technology adoption
(see the review in Kemp and Volpi, 2008).

While the potential of ABM to address the weaknesses of con-
ventional diffusion models is quite promising, it is important that
ABM development for the study of human-technical systems follow
fundamentally sound principles (Durlauf, 2012; Grimm et al., 2005;
North and Macal, 2007; Rand and Rust, 2011; Smajgl and Barreteau,
2014). In particular, agents' decision rules (Durlauf, 2012), the
empirical basis of the system description (Bohlmann et al., 2010;
Parunak et al., 1998; Smajgl et al., 2011; Sopha et al., 2013), and
model validation (Fagiolo et al., 2007; Heppenstall et al., 2006;
Werker and Brenner, 2004) demand rigorous treatment. This is
especially important if policy evaluation or predictive modeling is
the main objective. Though not always followed in practice, the
need for empirical basis and validation in ABMs has been
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recognized before (Durlauf, 2012; Filatova et al., 2013; Grimm et al.,
2005; Rand and Rust, 2011). By grounding the agent states, decision
rules, and environmental variables in empirical patterns, ABMs
could gain descriptive (Epstein, 2008), explanatory (Durlauf, 2012),
and predictive power (Railsback and Grimm, 2011).

Mindful of the opportunities and pitfalls of ABM, in this paper
we present a theoretically-driven and empirically-grounded ABM
of residential solar adoption. Our choice to study solar adoption
using ABM is motivated primarily by two factors. First, over the last
decade solar has emerged as a serious electricity supply option, and
has been the fastest growing energy technology globally (Gelman
and Meshek, 2013; Tyagi et al., 2013; U.S. Energy Information
Administration, 2013). Solar's spread also has important broader
implications. For example, while the penetration of solar is still
quite low in most of the United States (and the rest of the world),
solar has already upended conventional expectations and has been
at the center of discussions on revisiting the conventional electric
utility model in the U.S. (Blackburn et al., 2014). Second, from a
theoretical viewpoint, acquiring a solar system is a complex deci-
sion requiring significant time and monetary resources from the
consumer (Rai and Robinson, 2013). Further, the decision to adopt
solar is characterized by “non-price” interactions between con-
sumers with limited (and different) information sets, which in turn
are fed via different (individually specific) social networks. For
example, some recent research provides strong evidence about the
importance of local peer-networks in driving the rate of adoption of
residential solar (Bollinger and Gillingham, 2012; Noll et al., 2014;
Rai and Robinson, 2013). As such, studying the solar adoption
process provides a unique window into exploring the structure and
role of social interactions embedded within such complex de-
cisions. ABM is a naturally suitable method to represent these
complexities of the solar adoption decision process. The rest of this
paper is a detailed presentation of the data and methodology used
to set up, initialize, validate the solar ABM, and discuss its
applications.

3. Data and methodology

Our modeling goal is to build a household-level agent-based model that is able to
generate the empirically observed temporal and spatial patterns of the adoption of
residential solar at the city scale. Accordingly, the solar adoption ABM presented
here uses the 173,466 actual single-family residential households in Austin, Texas
(accurate as of mid 2013) as the primary agents. The time period of the simulation is
from 2004 to June 2013, during which the adoption level grew from only N = 20 to
2738. Note that since the adoption level (1.58% of the relevant population) at the end
of the model period is relatively low, it makes the modeling task especially chal-
lenging. In this section we present the step-by-step process of the solar ABM: (i)
model set up and how the different model components interact with each other, and
(ii) the integration of granular data from surveys, utility rebate programs, and
household-level publicly available data to represent the environment and to
initialize agent states. The simulations were run using the Stampede Supercomputer
at the Texas Advanced Computing Center (TACC).

3.1. Data

In order to accurately represent market conditions, agent-based models need to
incorporate empirical data for initialization and validation. In this section we pro-
vide details for each of the data-streams in the model and then elaborate in the later
sections upon the way data are used in the model. As explained below, the resulting
household-level database is a combination of granular socio-economic de-
mographics and environmental data for every household in the study area as well as
detailed time-series rebate program and survey data for the solar adopters. This
combination of carefully overlaid data-streams is critical in enabling us to model the
economic, attitudinal, and social network attributes.

3.1.1. Austin solar rebate program data

Program tracking data on PV adopters was collected by the electric utility
(Austin Energy) as a part of the implementation of Austin's solar rebate program.
This data included information about the installation date, system size, all technical
details of the system, rebate amount, system cost, and the location of the installa-
tion. Installation locations were geocoded to street locations in a GIS with a 97.9%
match rate. Geocoding the matched locations allowed geographic distributions of PV

system characteristics and survey responses (see below) to be overlaid with other
socio-economic demographics and environmental layers (see Table 1).

3.1.2. Solar adopter survey

Longitudinal survey data on PV adopters in Austin were collected in three main
waves from 2011 to 2014. The 616 responses from PV adopters in Austin constituted
a 22.5% response rate. The survey consisted of detailed questions regarding the
behavioral, financial, and social components of the adoption decision. Relevant
questions are included in Supplementary Information. Further, respondents were
given the option to provide personal identifiers, allowing responses to be joined to
detailed solar rebate program data (Section 3.1.1). 82% of respondents opted to
provide this additional information.

3.1.3. Appraisal district data

Publicly available data from the Travis County Appraisal District (TCAD) were
used to generate household parcel polygon shapefiles, which were joined to the
TCAD database containing appraised and market home value, parcel area, land-use
codes, construction date, and major home improvements. Land-use codes were used
to filter the data down to single-family residential parcels. A spatial join was used to
match geocoded PV adopter locations to residential parcels.

3.1.4. Household footprint, tree-cover, and terrain

Publicly available light detection and ranging (LIDAR) data from the City of
Austin were used to generate household footprint and tree-cover layers. One LIDAR
raster was used, as time-series LIDAR data were not available. The household foot-
prints were approximated using the roof area shape. Tree-cover was assessed using
the IR band. These layers were overlaid and joined to the residential households.
Capital Area Council of Governments (CAPCOG) data were also used to define utility
service area boundaries, zip codes, roadways, and bodies of water. Terrain and
elevation data from the U.S. Geological Survey (USGS) National Elevation Dataset at
the 3 m level were used to create a digital elevation model (DEM) of the study area.
DEM derivatives such as slope, curvature, aspect, and hillshade were calculated and
used to calculate solar irradiance in Watt-hours per square foot for the entire study
area.

3.2. Model overview and design

The formulation of our behavioral model is motivated by the Theory of Planned
Behavior (TPB) — a widely applied behavioral model in psychology (Ajzen, 1991;
Armitage and Conner, 2001; Glasman and Albarracan, 2006; Madden et al.,
1992).? Variations of the TPB framework have been applied in a number of agent-
based models describing theoretical markets (Zhang, 2007), human migration
(Kniveton et al., 2011), dietary choice (Richetin et al., 2010), and technology diffusion
(Kaufmann et al., 2009; Schwarz and Ernst, 2009; Sopha et al., 2013; Zhang and
Nuttal, 2012). Fig. 1 shows the various components of the solar ABM developed
here. These components were combined in the integrated model in the R pro-
gramming language, with supporting methods written in Python. Each of these
components is described in detail later in this section. We begin by providing an
overview and design concepts of the model components to illustrate the mechanics
of the ABM.

In the model two key elements determine the decision of agents to adopt or not
adopt solar: an attitudinal component (“attitude”) and a control component
(“control”). As explained later, a social network model is embedded within the
Attitudinal module. As the model cycles forward in time, both the attitude and
control attributes of all agents evolve based on interactions with other agents (in
respective social networks) and/or feedback from the environment. The decision

2 TPB states that human behavior is the result of the intention to perform the
behavior. In turn, the intention itself is driven by the individual's attitude toward
the behavior, subjective norms, i.e., perceptions about social expectations and
pressure, and perceived behavioral control (PBC), i.e., the individual's perception of
her ability to actually perform the behavior (Ajzen, 2002). Thus, “[a]s a general rule,
the more favorable the attitude and subjective norm, and the greater the perceived
control, the stronger should be the person's intention to perform the behavior in
question” (Ajzen, 2002). The three components of intention can be modeled as a
function of attitudinal, social, and demographic variables (Mainieri et al., 1997;
Montano and Kasprzyk, 2008).

3 While the model was designed to operate using a utility budget constraint if
relevant (“Check Budget”), all the scenarios described in this paper are uncon-
strained. Furthermore, the “Check PV Awareness” step checks at each time step for
each agent if they are “aware”, which is defined as at least one other agent in the
social network being a PV adopter. This step was included for consistency with the
literature (Bass et al., 1994), but it has no significant impact on the model for two
reasons: (i) within the first few time steps a vast majority of the agents become
“aware” and (ii) those agents that are “unaware” are also highly likely to be either
below the attitudinal or the control threshold. That is, compared to “awareness”, sia
and pbc are much tougher constraints on adoption, thus making the awareness
check redundant.
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Table 1

Data streams incorporated into the ABM for initialization, fitting, and validation. Scale refers to the population of agents used in the model, which covers the 173,466 residential

households in the city of Austin.

Data sources

Source Content Scope Scale Resolution Time frame
Austin Energy System details, location, installation date, etc PV Adopters Population Household 2004—-2013
UT Austin Survey responses regarding installation decision PV Adopters Sample, 22.5% Household 2011-2014
TCAD Home value, parcel size, land-use code, etc Land parcels Population Household 2013
CAPCOG LIDAR images City of Austin visible above ground Population 6in 2013
USGS National Elevation Dataset City of Austin elevation ASL Population 3m 2013

criteria is that both an agent's attitude and control attributes must be above certain
respective thresholds before she adopts solar. We use a global attitude threshold
(Valente, 1996) to determine if an agent has a strong enough positive attitude to-
ward the technology to potentially adopt it. Section 3.3.3 presents the detailed
methodology for the attitudinal sub-model. To determine whether an agent can
potentially afford to adopt the technology, we use an individual control threshold.
Details of the control sub-model are presented in Section 3.3.1. Following the steps, if
the agent has a sufficiently strong attitude and control, then the agent will adopt
solar. Note that this formulation specifies the attitude and control components as
being able to evolve independently. This is consistent with the underlying con-
struction of TPB. An examination of the data for our empirical case (solar adoption in
Austin, TX) supports this formulation. Further, a recent survey of non-adopters in
Texas confirms that attitude and control variables regarding solar exhibit significant
independence (Rai and Beck, 2015).

In its standard form TPB is formulated as a static model of behavior: at a specific
time, TPB maps measures of attitude, subjective norms, and perceived behavioral
control (PBC) onto intention, and intention onto actual behavior. TPB does not
specify how these variables evolve over time allowing intention to change. Since in
reality these measures are not static — for example, norms and attitudes evolve over

time through social interactions (Baron and Boudreau, 1987; Chartrand and Bargh,
1999) — incorporating TPB in ABM requires complementary means of evolving
agent variables. In our formulation, the dynamic aspect in the control component of
agent behavior comes from the changing economics of solar. Section 3.3.1 discusses
the control module in further details. Furthermore, as described in Section 3.3.3, we
use the Relative Agreement (RA) algorithm to model the process through which
agent attitudes and uncertainties around those attitudes evolve through agent—-
agent interactions (Deffuant et al., 2000; Hegselmann and Krause, 2002; Meadows
and Cliff, 2012).

3.3. Initialization

Agent states should reflect the conditions at model initiation (t = 0) in order to
anchor the model in the empirical time-series. We match these attributes to the
relevant data in the city of Austin in Q4 2007 through population-wide household-
level empirical initialization. Each time step corresponds to one quarter year. Thus,
in terms of time steps, Q4 2007 is t = 0 and Q1 2008 is t = 1, the first step in the
model cycle. Initial agent state distributions of the fully empirical initialization
process for agents economic, network, and attitudinal attributes are discussed next.

( Initialization t=0 )

-

I Attitudinal I I Economic |

Legend

Assign sia
x

t=t+1

Social

Assign U
x
Assign pbe
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Check Budget

Attitudinal Activation
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‘_J
RA
Algorith *Upd.ate [\ Update
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Fig. 1. Flowchart describing the solar ABM structure, emphasizing the agent decision process to install solar. Agent states are initialized using a population-wide empirical process
using data through Q4 2007. Thus, the first model cycle occurs in Q1 2008. Agents' attitudes (sia) and uncertainty regarding those attitudes (U) are modified through interactions
with other agents in their small-world social network through the Relative Agreement algorithm, and compared to a global threshold (sia™"). Individual control beliefs (phc)
regarding ability to afford solar are compared to current payback periods (PP), which are influenced by house location, electricity prices and available incentives. Adoption occurs
only when both the attitudinal and the economic criteria are met. The “Check Budget” and “Check PV Awareness” steps exist in the framework, but do not impact the model

outcomes.>
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3.3.1. The control module: PV economics and payback

The control module is modeled after the perceived behavioral control (pbc)
construct from TPB. Note that pbc in TPB is a more general concept than just a
measure of economic control over a decision. For solar, however, the perception of
affordability (or lack thereof) is often cited as the most important barrier to adoption
(Rai and Beck, 2015; Rai and Sigrin, 2013). Thus, for our purposes focusing on the
economic component of behavioral control is justified. We use the pbc variable as a
measure of an agent's perception of her ability (control) to perform a behavior, in the
face of “the presence of factors that may facilitate or impede performance of the
behavior” (Ajzen, 2002). Simple payback was the most commonly used financial
metric by solar adopters surveyed in the study area (Rai and McAndrews, 2012; Rai
and Sigrin, 2013). Accordingly, we compute pbc; for each agent i as the minimum
tolerable payback period of investing in a solar system. The interpretation in the
context of TPB is that an agent perceives full control over adoption if the payback is
lower than the agent's pbc. More concretely, an agent i compares her pbc; with the
empirical payback at the current time period PP;.. Assuming that she is already above
the attitudinal threshold (see Section 3.3.3), adoption happens only if the payback is
lower than pbc;, that is:

PPy < pbc;. (1)

As explained below, note that pbc; is computed only once for each agent and has
that same value throughout the simulation period; thus, we assume the pbc to be an
intrinsic, time invariant attribute of an agent over the simulation period. In contrast,
as discussed next, payback is a dynamic quantity and changes for each agent over
time.

As shown in Equation (2), payback is calculated as a function of the value of the
electricity produced by the solar system (e), the per unit price p of the solar system
(in $/Watt), utility rebates (R), and the federal investment tax credit (ITC) for each
time period t, and the annual system electricity generation G (in kWh/kW, calculated
based on site-specific irradiance):

PPy = (pt — Rt — (pt — Re) x ITCt)/(Gj x er). (2)

In this formulation, PP is only affected by changes in prices and rebates. PP is
computed independently of any physical constraint owing to tree-cover, which, as
described below, is accounted for through pbc. Except p; all other variables in
Equation (2) are known exactly for each agent. p, was modeled using non-
parametric local polynomial regression (LOESS). In the LOESS model, price, the
dependent variable, is a function of time only. The price data were compiled from
Austin Energy solar rebate program tracking data. Observed prices range from nearly
$10/Watt in 2008 to just over $2/Watt in 2013. A moving window comprising 33% of
the data was used to create subsets of the time-series system-size data. Second-
order weighted least-squared polynomial regression estimates were obtained for
each subset. The pseudo R? from this technique was 0.72, and residuals were
approximately normal. The LOESS model outcome is presented in the
Supplementary Information (SI).

We model agents' pbc as a function of their financial resources and the relevant
physical features of their house. We take the home value (W) as a proxy for the
financial resources available to the agent. The relevant house-feature quantities are
size of the house (s), tree-cover (T), and irradiance received (I). Tree-cover and the
amount of sunlight received (including any hill shade) may be expected to impact
the perception of the financial viability of installing solar. This is supported by the
fact that modeling pbc as a function of W alone leads to over-prediction of adoption
among wealthy households, particularly in hilly areas. Because pbc is taken as a
single index value, the assumption is that given a sufficiently financially attractive
payback period, the agent will take measures to overcome tree-cover related
physical constraints.* Examining the data we find that this indeed is empirically the
case as demonstrated in wealthy adopter households with high tree-cover. As shown
in Equation (3), we model pbc as a linear sum, wherein greater financial resources
and amount of sunlight received increase the agent's pbc, while tree-cover share
over the roof decreases it:

pbci = ag + <I,-+W;— G)*) (3)

1

where W* and (T/s)" denote the weighted W and TJs (the tree-cover ratio), respec-
tively. The weighting is necessary in order to account for differences in the scales of
each of the components: W and T/s were made comparable to irradiance by
assigning weights such that the medians for W* and (T/s)" were equal to the median
of I. As discussed in Section 3.6, ap and «4 are parameters in the model that are fit to
minimize the error between the empirical number of cumulative adoptions each
quarter and the predicted number. The optimal values obtained from the fitting
process are ag = —60.61 and a1 = 2.46.

4 Unless very onerous, tree-trimming to clear tree shade for installing solar is not
expected to change the economics of solar installation.

3.3.2. The control metric pbc

By incorporating multiple relevant components, pbc more fully captures the
complexity of solar economics. The decomposition of pbc components and the
resultant pbc distribution are shown in Fig. 2. As can be seen, the pbc index has a
distinct spatial distribution (Fig. 2a, top left map) from any one of its components
(Fig. 2a, irradiance, home value, and tree-cover maps). Note that through the fitting
process described above a portion of the agent population gets assigned negative
pbc values (Fig. 2b). This reflects households that, given their financial and house
attributes, would not adopt solar regardless of the payback. For instance, this could
be because of need for large roofing improvements or extensive tree trimming,
which would result in large costs in addition to that of the solar system alone.
Looked at differently, values of pbc below 0 suggest that without making some of the
variables dynamic that we hold constant in the model (home value, roof size, tree
cover, irradiance) over the simulation time frame,” these households will not adopt
PV regardless of economics. As such, only households with positive pbc can be
considered to have “technical” solar PV potential.

In order to measure the accuracy of the pbc metric, we compare the pbc value
(Equation (3)) for each PV-adopter household to that same household's realized
payback period. The realized payback is calculated using Equation (2), but using the
actual price and timing information relevant for the specific agent (this data is
available from the solar rebate program dataset). Thus, the realized payback is
directly observed for all PV adopters. Recall that the economic threshold rule is that
an agent is able to install solar only if, at a given time, the payback is lower than the
agent's pbc.® Therefore, if our pbc routine is robust, then at the time that the actual
PV adopters acquired solar, their realized payback should have been lower than the
pbc computed using Equation (3). As shown in Fig. 3, the calculated pbc values
resulted in 86.6% correct predictions for the PP < pbc rule. This is an encouraging
result, given that Equation (3) uses only basic publicly available information and
there is no fitting associated with the choice of variables (I, s, W, and T) that go into
computing pbc or with their functional forms. We believe that the remaining error in
the model is due to the early stages of PV adoption in Austin (penetration level is less
than 2%). Previous studies have found that at early stages of PV adoption there are
indeed a segment of customers who adopt PV primarily for environmental reasons,
even when the economics may be unattractive (for example, adopters with negative
net present value) (Rai and McAndrews, 2012; Van Benthem et al., 2008). As such,
our model for computing pbc (Equation (3)) is likely unable to account for these
idiosyncratic adopters.

3.3.3. The attitude module: combining survey data and spatial regression

Two dynamic, heterogeneous attributes — attitude (sia) and uncertainty about
the attitude (U) — drive the attitudinal module. It is important to note that the value
of these variables for each agent varies over time, making the initialization process
more difficult. Initial uncertainty U was distributed in proportion to the inverse
absolute value of the initial sia for each agent. Our choice was based on previous
behavioral research indicating that people are more likely to process relevant in-
formation and thus have higher uncertainty if they do not hold extreme attitudes
(Clark et al., 2008; Maio et al., 1996). In the remainder of this section, we focus on the
main attitudinal attribute itself, sia. For the model to be empirically grounded, the
requirement of matching initial conditions must be addressed: at simulation initi-
ation (time ty = 0, Q4 2007), sia needs to be initialized as close as possible to the
actual sia at ty for all agents. In our model, this means every household in the study
area. Measuring attitudinal variables necessitates self-reported questionnaires.
Thus, obtaining the empirical population-wide distributions for heterogeneous agent
attitudes using survey data would require surveying all households in the study area
either longitudinally or on past beliefs about a technology (for example, perceptions
of the profitability of solar). Longitudinal survey data collected since the early years
of the adoption process for the technology of interest would be the ideal solution.
Rarely is that data available; we believe that, although potentially the most accurate,
this approach is not practical for most applications because of high costs and long
lead times involved. The second approach would be a survey conducted in the
present — potentially years after the beginning of the adoption process — that would
ask agents (adopters and non-adopters) about their attitudes in the past (at tp).
While the adopters may still have better and more accurate recall of their attitude
and other decision-variables at ty, this approach is especially problematic for non-
adopters, who, in general, are unlikely to have closely tracked their evaluation of a
novel technology over time. As such, this approach is prone to significant mea-
surement error. In general, then, both these approaches would result in high cost,
unacceptable measurement errors, or both.

Instead, here we use a statistical modeling approach to derive population-wide
estimates for agent attitudes at initialization, using attitude measurements on past
beliefs for a sample of the adopters. The basic approach is to use kriging spatial

5 These variables are held constant in the model due to lack of good historical
data on which to base a dynamic formulation.

6 As discussed in Section 3.2, the economic criterion is a necessary but not a
sufficient condition for adoption. Sufficiency requires both the social and the eco-
nomic criteria to be met.
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Fig. 2. (a) The spatial distribution of pbc and its components over the agent populations, and (b) the resulting statistical distribution. pbc is distinct from any of the three com-
ponents, but the effects of each are visible. By allowing for more complexity than a simple measure, for example home value alone, pbc better captures the realities of solar

economics, as related to affordability.

autocorrelation model to take advantage of any spatial patterns in the data.
Accordingly, sia is modeled and interpolated to the entire population in to (Q4 2007),
according to a three-step process:

Step 1: TPB posits that an individual's attitude towards a behavior arises from
behavioral beliefs — beliefs of the individual about the likely outcomes of the
behavior and her evaluation of those outcomes (Ajzen, 1991). Following this
reasoning, we create an index of survey items using data from 2004 to 2007 (Only
respondents that were able to be geocoded were used: N = 108, i.e., 20% of the solar
adopter population through 2007) using ten questions on the financial, environ-
mental, and social aspects of their beliefs. Relevant survey questions related to these
attributes are provided in SI (items 1-8). Critically, in this step, sia estimates are
generated only for PV-adopter survey respondents (in Step three the relationships
between these values and publicly available population data are used to generate
estimates for the entire population). We further recognize that there is potential
heterogeneity among agents in how much importance they place on each of the
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Fig. 3. Estimates for each empirical adopter household's control measure pbc
compared to their realized payback period PP in order to evaluate the initialization
method in Section 3.3.1. The initialization method shown does much better than
random, validating the decision rule for 86.6% of the empirical adopters.

components of sia. For example, this allows for the situation where an agent may
believe that solar is unprofitable, but profitability may not have been an important
factor in that agent's decision to install solar. To account for this we use additional
data from the PV-adopter survey to calculate a weighted average, where the weights
(wy) are the revealed importance of each component (relevant survey questions
related to the weights are provided in SI (item 9)). As noted above, this weighting is
done only for the PV adopters for whom we have matched survey data (N = 108).

Thus, as shown in Equation (4), rather than being one simple measure of opinion
regarding solar, sia for a given solar adopter i is an index of three components
composed of financial (F;), environmental (E;), and social (S;) belief indices for that
adopter. The financial index F; is the sum of survey respondent i's estimation of the
payback period PP, characterization of the profitability of the system Pr;, and net
monthly electricity bill savings Ms;. The environmental index E; is the sum of the
level of overall environmental concern EGC;, the amount the individual is willing to
pay to protect the environment PayE;, and the level of concern for environmental
issues in the individual's neighborhood NeiE;.

. 1
sia; = 3 (W1ifi + Wi +5i), (4a)
1
Fy = 5 (PPi + Pri + Ms), (4b)
Ei = 1 (EC; + PayE; + NeiE;). (4c)

3

We quantified social influence from neighbors as well as other acquaintances to
account for the multiple interaction channels through which a potential adopter's
attitude about solar are influenced. Accordingly, we took the social component S; to
be the average of two sub-indices:

3 .

_1Neiy;
Si= % (w;i@ + w4iAq,-> ,where (5a)
log(N{‘Ei + 1),Mol-, Cnf; €Neiy;, and (5b)
Agi = log(Ac; + 1). (5¢)

N{“"' is the number of reported systems in the neighborhood, Moj; is the degree of
motivation obtained from neighborhood systems, and Cnf; is the degree of confi-
dence obtained from neighborhood systems. Ac; is the number of contacts with PV
owners outside the neighborhood. Note that Nxﬂe" and Ac; are taken on the log scale to
mitigate the influence of high counts in the index. Thus, S; represents the contri-
bution of social influence, including the influence of both neighbors and other ac-
quaintances, in shaping an individual's attitude.

Step 2: As noted above, collecting past micro-data from the entire population of
N households is infeasible and would likely involve a high degree of measurement
error. Instead, to infer these values for each household we model the sia index
created in Step one as follows:
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sia; = f(s;, Ti/si, Wi/si) + e, (6)

wherein sia is modeled as a function of home parcel size s, ratio of tree-cover to size
(T/s), and home value per unit size (W/s), and « is the error term. Note that the idea
here is to express sia in terms of publicly known variables for every household in the
study area. Due to the large number of potential covariates (up to fifth order poly-
nomials were considered), model selection was performed via a stepwise procedure
using the Akaike information criterion (AIC).

Step 3: While the model presented in Equation (6) provides a reasonable esti-
mate of sia values, it assumes that there is no geographic relationship in agent at-
titudes beyond what may be captured by just s, T, and W. In reality, there may be
unobserved attitudinal heterogeneity associated with geographical location for two
reasons: first, geography may serve as a good proxy for additional socio-economic
demographic variables not captured directly in our model, but which do impact
attitudes (for example, education); and second, because attitudes may be expected
to converge locally due to targeted marketing or neighborhood information ex-
change, for example through neighborhood associations or community organiza-
tions (Noll et al.,, 2014). To account for this, we modify the model in Equation (6)
using a spatial autocorrelation model (kriging with trend), giving:

sia; = f(si, T/ Wi, Wi/si) + mi(x.y) + & (x,¥) + 6, (7)

where ¢} is the kriging adjustment, m; is the spatial trend adjustment, and ¢; is the
residual error term accounting for variation in sia not explained by the publicly
available data or geography. The function f describes the relationship obtained in the
estimation of Equation (6). The kriging model acts as a spatial interpolator
(Goovaerts, 1997), using the sum of neighboring de-trended values, weighted by
distance to location u (=(x,y)) and distance to nearby values, to estimate the spatial
contribution to sia at locations where it is not directly observed.

3.3.4. Agent attitude initial distribution
Based on AIC, the actual linear regression model that we estimate for Equation
(6) using the survey data is as follows’:

sia; = Bo + B1log(s;) + B2log(s;)* + Bslog(s;)*

; -\ 2 -\ 3 2 N\ 3 (8)
w0a(G)+0s(5) +5) o (5) +(5) +e

Recall that in Step 1 sia was calculated for PV adopters between 2004 and 2007
with matched survey and appraisal district data. So, the coefficient values in
Equation (8) are estimated using these households. The estimated model had an
AdjR? of 0.21. Details of the kriging procedure and diagnostic plots for this model can
be found in the SI.

As discussed in Step 3, before generating population estimates, we first adjust
for spatial relationships to improve the sia model according to Equation (7). Fig. 4a
displays the total kriging adjustment values (m; + ¢} in Equation (7)) obtained by the
kriging with trend model. The geographic distribution of standard errors around the
kriging estimates are shown in Fig. 4b. The green points on the map show the lo-
cations of pre-2008 adopters — these points were the precise locations to which the
kriging model for spatial autocorrelation was fitted. As can be expected, standard
error around ¢" increases around the edges of the study area and where survey
samples were less abundant. Using the same set of adopters as used to estimate
Equation (8), the kriging adjustment process increased the model AdjR*> by an
additional 0.15. Thus, the adjusted R? for the updated model given by Equation (7)
was 0.36.° Finally, the sia estimates across the study area are obtained by using
the estimated coefficients in Equation (7).

In sum, this technique shows how we have used multiple data-streams to
address the initialization requirement, while avoiding the use of ad hoc random
distributions. Future work could explore the application of the above approach for
initializing a range of agent attributes in addition to sia as was done here.

3.4. Evolution of agent attitude

While the importance of modeling the evolution of agent attitudes is gaining
recognition, many models still oversimplify or ignore this aspect (Thiriot and Kant,

7 We used a backward selection process starting with 5th order polynomials and
full interaction terms. It was in this process that the first order ratio term (W/s) was
removed. Remaining variables shown are all significant.

8 Overall, there are nine parameters in the sia model (Eq. (8)) and six parameters
in the kriging adjustment model (Eq. (8) in SI). Each of these two models is inde-
pendently fitted using 108 data points, which is sufficiently large (observations-to-
parameter ratio>10) to mitigate any serious overfitting concerns; model di-
agnostics support this as well. As discussed in the Validation and Results sections,
the integrated ABM model itself is independently validated using multiple criteria,
including a “test” set of predictions through Q4 2014. To the extent overfitting in
the sia model may be an issue, it would show up as poor validation metrics for the
integrated model.

2008). Within ABM, the most common models of attitude modification between
agents are probabilistic (Bhargava et al., 1993), number-of-neighbors (Delre et al.,
2007), percentage-of-neighbors (Bohlmann et al, 2010), or simple averaging
(Acemoglu et al., 2010). While easy to implement, these approaches oversimplify the
reality of opinion dynamics as a complex, multi-dimensional process (Castellano
et al.,, 2009; Kelman, 1961; Lorenz, 2007).

To better account for opinion dynamics in our behavioral model, at each time-
step agents' attitudes about the technology (sia) and the uncertainties around
those attitudes (U) are modified through interactions with other agents. Thus, as
social norms are represented by the distribution of attitudes among other agents,
they also are reflected dynamically in agent attitudes via agent—agent interactions.
Interaction is modeled according to the Relative Agreement (RA) algorithm
(Deffuant et al., 2002, 2000; Hegselmann and Krause, 2002; Meadows and Cliff,
2012). In the RA algorithm, as the model moves forward though the simulated
time-series, pairs of agents i and j interact, where i influences j. The extent to which
such interactions alter agent j's attitude depends upon the overlap (the relative
agreement) between agent i's and agent j's attitudes. In general, with the RA model
agents are only influenced by other agents with relatively similar attitudes. A
detailed formulation of the RA algorithm is presented in SI. At each time step, each
agent interacts with ¢ other random agents from her social network. The choice of
which agents interact is determined by the social network model: households are
placed in small-world networks (SWN) where the majority of their connections are
geographic and economic neighbors (live nearby and have similar wealth charac-
teristics). Next we provide the details of how we use spatial and socio-economic
demographic factors to construct the small-world network used in the solar ABM.

3.4.1. Agent social networks

Individual consumer attitudes are modified over time through social influence
and interactions (Wood, 2000). In the solar ABM we model this attitude evolution
process to be the result of agent—agent interactions. Agent interactions with their
connections (for example, friends and neighbors) depend on the social network
structure. We use the small-world network model as the structure of the underlying
social networks of agents in the solar ABM.? In the small-world network model, the
definition of “local” needs to be resolved. For solar, contact with neighbors has been
shown to drive down information costs, much more so than contact with non-
neighbors (Rai and Robinson, 2013). This finding motivated a distance-based defi-
nition of local connections in the solar ABM. Accordingly, social network of agents in
the model were largely made of households proximate in space to agent location.

The construction of agent networks was fully spatially resolved: actual agent
locations and distances from other agents were used in generating the networks.
Neighborhoods can be defined in a simple yet flexible manner by setting a radius r
around each household. However, the choice of what r to use is not intuitive. In our
model, r was determined by calculating a relevant distance from the empirical data:
we looked at multiple distance bands, and calculated the spatial autocorrelation
between adopter locations for each. In accordance with the known strong peer-
effects in residential solar adoption, r was chosen as the distance at which PV
adopter clusters are the strongest. Because these clusters arise through interaction
within the neighborhood, the use of empirical clustering to determine the best
distance by which to define the locals set arises from an observed pattern and prior
empirical work. Importantly, this is an automated method that can be applied to any
study area and for any technology influenced by social interaction effects.

Equation (9) shows how the level of correlation L for the study area A (in our case
the city of Austin, Texas) is calculated as a function of distance d using a common
transformation of Ripley's K function (Dixon, 2006). k is a weight assigned to a given
pair of actual solar adopters i and j in Austin. For each value of d tried, k takes on the
value of one if the distance between the points i and j in the GIS is less than or equal
to d and zero otherwise. i;qng and jrgng represent random points, used to generate the
expected value L(d)rqnd.

(9a)

9 Alarge body of research on the composition of social networks has shown that
links between people can be categorized as mostly local (for example, geographi-
cally proximate) connections, with a minority of non-local connections (Milgram,
1967; Schnettler, 2009; Watts and Strogatz, 1998). These small-world networks
have been used in ABMs to simulate the diffusion of technology through pop-
ulations (Deffuant et al., 2005). Empirical specification of social networks presents
several challenges. The ideal approach for small, closed groups is individual
network solicitation. For larger groups, solicitation based on random sampling is
possible (Axsen et al., 2013; Maertens and Barrett, 2013). However, for very large
networks where explicit connection data is limited or costly, social network
inference is possible using attributes such as proximity, wealth, and gender
(Munshi, 2004).
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3.4.2. Generating agent social networks

We generated L scores for d values of 30.5 m (100 ft) intervals up to 3050 m
(10,000 ft), and compared them to the expected (random) score L;qnq. Effectively, this
allowed us to test a multitude of distances to determine which was most relevant
empirically, in the sense of strongest locational clustering of solar adopters. This
process yielded a value of r = 610 m (2000 ft). The static geographical network
model with r = 610 m yielded an approximately normal degree distribution trun-
cated at 0 with mean 498, and standard deviation 226.7. It is very unlikely that the
average person will interact with 498 neighbors. To scale down the degree distri-
bution to a more realistic range, we applied the additional constraint of wealth
similarity. Homophily is a common attribute of social networks and has been found
to play an important role in community structure (Girvan and Newman, 2002;
Henry et al,, 2011; McPherson et al., 2001). In applying the homophily constraint
we maintained proportionality, while reducing the locals-set by calculating the
squared difference in wealth between the target node and its geographical neigh-
bors: (W; — Wj)z; then, the 5% of agents with the smallest squared difference were
connected as neighbors of i. Thus, geographic neighbors that are the most similar in
wealth (as proxied by home value) were connected as locals. Finally, random con-
nections were substituted for local connections with a 10% re-wiring probability to
create a small-world structure; i.e., 10% of the local connections were replaced with
random non-local connections with nodes anywhere in the population (the per-
centage of random connections is a parameter in the dynamic part of the model,
sensitivities are shown in the SI). This yields a directional network. For example, it is
possible that i could seek information from j, but j would not seek information from
i. This property is common in information search and referral networks (Brown and
Reingen, 1987; Hinz and Spann, 2008; Leskovec et al., 2006). In the SI we show the
resulting degree distributions and how the network created for the solar ABM
compares to an equivalent Erdés-Rényi random graph.

3.5. Verification

After the ABM was constructed, the model operation was verified extensively
through two parallel approaches: (i) testing of all sub-components using parameter
sensitivity (sign and magnitude) as well as using simple test cases with known
outcomes, and (ii) testing of the integrated model in a limited study area (one zip-
code, results published in Robinson et al. (2013)). Parameter sensitivity is reported in
SI, available online. Reduction of the study area to one zip code allowed the model
dynamics to be tracked through simple alterations in the agent decision rules by
means of visualization of agent-states in real-time. For further verification, the
model was slowed down by controlling time steps manually. At this spa-
tial-temporal scale, the model was able to be run on desktop computing resources,
and visualization was accomplished through the Agent Analyst Extension (Johnston
et al, 2013) in ESRI ArcGIS software.

3.6. Fitting

The model was fit to a real-world time-series of solar installation data from the
solar program in Austin (see Section 3.1 for more details on data). Data from Q1 2004
— Q42007 were used for initialization, while data from Q1 2008 — Q2 2013 were used
for fitting, yielding the “base case” integrated model (details described in Section 4.1).
While there were several model outcomes (response variables) against which the
model could be fit, only the cumulative number of installations over time was used to fit
the model parameters. The deviation, or root mean squared error (RMSE) of the model
was used as the objective function to minimize, and was calculated as follows:

(10)

where q is a given quarter, @ is the cumulative number of predicted adopters by the
model, and a is the number of cumulative adopters in the empirical data. The choice of
cumulative installations as the fitting criterion serves several purposes. First, the total
number of households that have installed solar at a given point in time is intuitive,
and a measure tracked closely by policy-makers and program managers. Second, it is
a highly aggregated measure, reducing the risk of over-fitting. Because the ABM
operates at the individual level, fitting at the aggregate level allows the model to
retain degrees of freedom because (over 2700 cumulative) adopters can be any
households, anywhere in the study area, but still meet the fitting criterion. This type
of error will only show up in validation, not fitting. This allows for validation along
multiple unfitted outcomes, thereby providing a more powerful test of the predictive
capability of the model. Finally, fitting to the cumulative adoption level means that
our validation criteria will have very comparable sample sizes, increasing the
robustness of the validation metrics, which are discussed below in Section 3.7.

Six structural parameters were used to specify and control the social networks,
opinion convergence, and the distribution of the control variable (pbc). ¢ controls the
number of interactions per agent per quarter. u is the coefficient of convergence in
the RA algorithm (see SI). A" controls the percentage of random connections in each
agent's social network. ap and «q define the intercept and slope used in the linear
scaling procedure for calculating pbc. sia™" is the global attitude threshold value
necessary for a household to become an adopter. A global threshold allows for the
exchange of attitudes to occur at the same scale, and it also places the model in the
broader context of threshold models (Valente, 1996).1° Starting with reasonable

10 There are three primary reasons for using a global threshold for sia. 1) Practi-
cally, because attitude is “traded” between agents in the Relative Agreement al-
gorithm, it is important that these trades occur on an equal units basis. Individual
threshold would greatly impact the value of a given exchange, and thus the attitude
scale. 2) Theoretically, a global sia threshold fits with the original formation of
opinion dynamics models, including Relative Agreement. Furthermore, this mimics
threshold models, which are fairly common in the literature and well understood.
3) Finally, individual thresholds would require additional fitting mechanisms to
assign those thresholds to individuals to begin with, thereby making the model
more complex, while significantly reducing the degrees of freedom.
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guesses for the values of the parameters to be fit, the fitting of the model parameters
was done iteratively. Before the fitting process began, an initial reasonable guess for
each parameter was generated using prior work (Rai and McAndrews, 2012; Rai and
Robinson, 2013; Rai and Sigrin, 2013; Robinson et al., 2013) and/or pre-fitting test
runs to observe the behavior of the model in response to different sets of parameter
values. Then, each model parameter was varied systematically along a set range
while the others were held constant. The parameter value that generated the
minimum RMSE (cumulative) was selected and held, while the next parameter was
varied. After a full parameter sweep, the process was repeated two more times, at
which point the marginal decrease in RMSE by further adjustment was less than 2%.
Sensitivity testing on these parameters is reported in the SI.

Because there was some randomness in the simulation (for example in the order
in which the agents act, and which subset of connections are chosen randomly in the
RA algorithm), batches of 100 different runs were used in generating the statistics of
the variables of interest that were used in fitting and validation. For the RMSE
calculation (Eq. (10)), residuals for the cumulative number of adopters were calcu-
lated by subtracting each model output for a given quarter from the empirical
(actual) outcome in the same quarter.

3.7. Validation

We validate the model across four model outcomes: predictive accuracy; RMSE
of marginal adoptions temporally; spatial accuracy; and demographic accuracy.
Besides providing evidence of the model's adequacy in representing the target
system (solar technology adoption), the emergent properties associated with each
validation metric are linked to important policy or infrastructure planning questions
and are therefore interesting in their own right.

3.7.1. Validation of predictive accuracy

A predictive forecast was run using the base-case model parameters on a test set
of data held back during the fitting process. Recall that the model was fit using data
from twenty-two quarters (Q1 2008—Q2 2013). The predictive model uses the
parameter values fitted to this data to forecast out six quarters, Q3 2013 to Q4 2014.
Predictions were compared to empirical adoption levels over this period, which was
not used in any fitting process.

3.7.2. Temporal validation

The instantaneous rate at which adoption is occurring at a given point in time is
the slope of the cumulative adoption curve, and at a marco-level it shows whether
the technology is diffusing more slowly or more rapidly. We validate the rate of
adoption (the number of new adopters in quarter q) in our models using the RMSE
(Equation (10)) for the marginal number of adoptions each quarter. While the
marginal adoption rate is related to the fitting metric (the cumulative adoption over
time), due to variations in prices and rebates in the study area it is not entirely
dependent on the cumulative number of installations. Thus, the marginal RMSE is an
admissible independent metric for external validation.

3.7.3. Spatial validation

We validate the geographic distributions of solar adopters across the study area
according to three different statistics based on the density of systems per square
mile. It is important to note that these statistics were not used in model fitting (Section
3.6). The methodology for calculating error over space has received quite a bit of
attention in the geography and remote sensing literature (Pontius, 2000; Visser and
de Nijs, 2006). While most statistical comparison of maps relies on arithmetical cell-
by-cell evaluation (Wealands et al., 2005), this method can be flawed for many
applications because it ignores the spatial structure of the errors. We report the
simple arithmetic error (empirical; — predicted;, where i is a cell in a spatial grid or
raster) as well as two additional measures to evaluate the spatial prediction errors:
fuzzy numerical similarity (") and wavelet verification (). The first step was to
create an adoption probability for each agent in the model by averaging over the
simulation outcomes across all the 100 runs in a given batch.!! Next, a Gaussian
kernel density function'? with the predicted adoption probabilities as inputs was
used to calculate the number of systems per square mile over the entire study area at
100 ft raster resolution. This yielded the simulated raster, used for computing the
fuzzy numerical and the wavelet verification metrics. The same function was used
over the empirical data as the simulated data, allowing the two maps to be quan-
titatively compared and spatial error to be calculated.

One benefit of «” is that it rewards local similarity. Further details of the calcu-
lation of k" are provided in SI. While the fuzzy numerical method is useful for
assessing spatial similarity, the parameterization of the smoothing function can
impact the obtained metrics. In order to further check for robustness, we calculated
correlation coefficients using wavelet verification. Wavelet verification has gained
popularity in the meteorological literature due to the need to compare forecasts

11 A ‘batch’ refers to all the 100 independent runs of a specific model with the
same set of parameter values.

12 This was accomplished using the KernelDensity() function in ESRI's Spatial
Analyst ArcPy library.

against observed weather patterns at different resolutions (Briggs and Levine, 1997;
Casati et al., 2004). In this method, a wavelet transformation of the raster set is
performed for several wavelets. The wavelet with the lowest Shannon Entropy is
selected, and noise is removed by applying a soft threshold function, and a corre-
lation coefficient (r) can be generated. The discrete wavelets aggregate the rasters
to coarser resolutions (Briggs and Levine, 1997). In this study Harr wavelets and 8th
level aggregation (8 x 8) were used.

3.7.4. Demographic validation

In our study area, as of Q2 2013, the average non-adopter home value was
$267,965.80, compared to the average adopter home value of $475,326.40. However,
as the costs of solar decline over time, one would expect to see the technology being
adopted by less wealthy households. This downward trend was reflected in the
empirical data used in this study, and thus should be reproduced as an emergent
property by successful models. RMSE was calculated (Equation (10)) for comparison
of predicted and empirical outcomes, where @ was the median adopter home value
for a given quarter q in the model and a was the empirically observed median
adopter home value for that quarter.

As a further step, we validated adopter home values over space as well. This
served three purposes: first, it is plausible that the model could meet the aggregate
demographic validation criterion presented above but still be inaccurate at more
resolved spatial scales (for example, by predicting too-wealthy households in some
neighborhoods, but performing well on the city-level median). Second, it aligns the
spatial validation criterion with the explanatory scale (neighborhoods, roughly
610 m in radius) of the model. Third, by clearly pointing to areas of relatively higher
demographical error in the model, this validation could help identify potentially
influential variables for further improving the model. We used a similar method-
ology as described in Section 3.7.3 to calculate the simple error, fuzzy numerical
similarity, and wavelet correlation coefficients. It is worth noting that results from
the two metrics (spatial adoption density versus home value of adopters) are highly
differentiated: for example, shifting adopters just one house to the north would have
almost no visible effect on the density of systems per square mile, but could alter the
adopter home values considerably. This point is further explained in SI.

4. Results
4.1. The integrated model

In this section we present the results of fitting and validation of
the integrated model (also, the “base case”). The integrated model
is the full model that uses all model components as described in
Section 3.2 (Fig. 1). The integrated model also uses empirical dis-
tributions to initialize all agent states (Section 3.3). As such, it is
fully empirically grounded in terms of the description of the sys-
tem, in the sense that all model components are initiated and
populated with the most granular data available in the study. In-
tegrated Model fit (RMSE in cumulative adoptions, Fig. 5) was found
to be low, at 117.81. As RMSE units are always the same as the
quantity being estimated, this shows that on average the Integrated
Model was off by 117 households. For comparison, this is just 0.06%
of the 173,466 potential adopters in the study area, or 4.3% of the
cumulative number of adopters in Q2 2013 (N = 2738). This is not
surprising given the strong empirical foundation of the model.
Recall that model fitting is the basis for parameter value selection,
and is done only on the RMSE in the cumulative installation levels
over time (Section 3.6). The obtained parameter values are listed in
Table 2.

4.1.1. Predictive accuracy

In order to test the model's predictive validity, the model was
run forward through Q4 2014, as described in Section 3.7. These
predictions were compared to historical data over the same period
(Fig. 5). We emphasize that no additional fitting was performed.
The unfitted test set from Q3 2013 to Q4 2014 made up 21.4% of the
data (by number of quarters). The RMSE in cumulative installations
for the unfitted adoption forecast was 192.3 (households). This is
5.5% of the empirical cumulative adoption at the end of Q4 2014
(N = 3488). Importantly, as can be seen in Fig. 5 the forecast is able
to replicate the flattening of the empirical curve that starts around
Q4 2013 and the subsequent upswing in adoption. This kind of
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Fig. 5. Fit and predicted model outcomes compared to empirical data. Observed
adoption levels are shown by the gold line. The purple line shows the Integrated
Model, described in Section 4.1. The average of the six quarter forecast (Q3 2013 — Q4
2014) is shown as the red dashed line (Section 4.1.1). The points represent individual
model runs. No parameters were altered or fitted to data after Q2 2013. (For inter-

pretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

behavior is quite difficult to replicate using parametric forecasts
(Basic Structural Models, ARIMA models) without clear seasonal
patterns in the historical data. These results provide strong support
for the predictive capability of our model.

4.1.2. Temporal, spatial, and demographic validation

The three additional validation metrics discussed in Section 3.7
for the integrated model are reported in Table 3. Overall, validation
of the integrated model was highly supportive of the model
structure, components, and parameter values as being a strong
description of the target system and showed little evidence of over-
fitting. Temporal validation of the integrated model using marginal
adoption RMSE showed only one period of large error, in Q4 2011."3
As shown in Table 3, the spatial distribution of adopters predicted
by the integrated model was very similar to that seen in the
empirical data. Among a number of other model variations that
were tested,'* the integrated model showed the lowest average
spatial arithmetic error (0.46), highest fuzzy numerical «* (0.43),
and strongest wavelet correlation ¥ (0.86). While there were still
some areas of under- and over-prediction (blue and red in Fig. 6,
lower panel), the structure and location of most PV dense areas
(shown in darker brown in Fig. 6) matched well. The model also
performed well demographically, and of the various models tried it
had the lowest error with regard to predicted adopter home values

3 In our dataset in Q4 2011 the dollar per Watt installed costs of solar decreased
substantially. The price decline results in a surge in installations in the model
greater than that observed in the empirical data. With this quarter removed, the
Integrated Model RMSE is much lower, at 45.79.

4 These model variations were created by systematically reducing the empirical
basis of the model and/or simplifying agent decision rules. The full findings of the
systematic model comparisons are in preparation as a separate manuscript. Results
are available upon request.

Table 2
Parameters active in the Integrated Model and the values obtained during the fitting
process described in Section 3.6.

Model Parameters in the Integrated Model

) n o a0 o Siathresh

4.0 0.38 0.1 —60.61 2.46 0.6

(Table 3 and Fig. 7). Further, as reflected in the low demographic
RMSE, the integrated model matched the overall slow downward
trend in adopter wealth over time (not shown). Although there are
still spaces where this model shows non-negligible spatial de-
mographic error — particularly two areas in North and West Austin
where the model is predicting home values of adopters to be lower
than observed — overall the integrated model performs quite well
in spatial demographic validation (Fig. 7). This suggests that not
only does the model represent average adopter home values well,
but that it can account for local neighborhood variations as well.

4.2. Applications

The development of a validated integrated model allows for
virtual policy experiments to be performed. The flexibility around
these application scenarios is a major strength of ABM. Below we
present two illustrative applications of the ABM model developed
here (see Section 1.2 for the motivation behind these applications.).

4.2.1. Addressing equity concerns: additional rebates for low-
income households

Additional rebate offerings for low-income households were
simulated in two scenarios using the Integrated Model (Section
4.1). Rebate levels were increased by $0.2 per Watt in the first
scenario and $0.4 per Watt in the second scenario. In this simula-
tion experiment, these additional rebates were offered to only those
households in the bottom quartile of wealth (proxied by home
value). The additional rebates were offered to low-income house-
holds for the entire simulation period. To assess the impact of
additional rebates, the change in adoption among low-income
households was measured in the simulation experiment relative
to the unaltered Integrated Model results presented in Section 4.1.
Results are shown in Table 4. In the Integrated Model 2.5% of
adopter households fall in the low-income category. In the $0.2 per
Watt rebate increase scenario, the proportion of low-income
adopters increases to 3.3%. In the $0.4 per Watt rebate increase
scenario, the proportion of low-income adopters increases to 4.4%.
While these results are not dramatic in absolute terms, the relative
increase over baseline levels is substantial (33% and 81.5%,
respectively). The relatively low impact (in absolute terms) of the
simulated rebate increases suggests that large rebate increases may
be needed to drive low-income solar adoption.

4.2.2. Impact of rebate level changes on adoption
A question that solar program designers often face is how much
would adoption change if rebate levels were changed. To examine

Table 3

Summary of validation results for the four models. Descriptions of each of the
metrics can be found in Section 3.7. Temporal, spatial, and demographic validation
metrics are independent of the fitting criteria.

Validation metrics for the Integrated Model

RMSE Sp: Sp: Sp: Dem: Dem: Dem: Dem:
marginal Simple Fuzzyx 1™ RMSE Simple w

Fuzzyk T
76.93 0.46 043 0.86 110,580.2 —-37,967.7 0.81 0.81
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Fig. 6. Spatial system-density (systems per square mile or 1.61 square kilometer) validation for the integrated model. The empirical system density is shown in the far left panel. The
top (yellow—brown) panels show simulated system density, while the lower (divergent blue—red) panels show simple error (Empirical — Simulated) in system density. Raster
resolution is 30.5 m. Additional spatial validation metrics, fuzzy numerical k, and ¥ are reported in Table 3. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

this question we performed a simulation experiment wherein the
price of solar to the customer ($/Watt, net of any rebates and in-
centives) was systematically varied compared to historical
observed prices, which were used in the Integrated Model (Section
4.1). To mimic increased rebate levels, we created 10 scenarios. In
each scenario, prices (faced by the customer) were decreased in
steps of 0.025 $/W up to a maximum of 0.25 $/W; so in the first
scenario the price decrease (P) was 0.025 $/W and in the tenth
scenario it was 0.25 $/W. The additional rebate in each scenario
remained in effect throughout the simulation period, Q1 2008

through Q2 2013. 100 model runs were performed for each sce-
nario. The impact on adoption was obtained by regressing A, the
change in quarterly adoption relative to the base case on the
exogenous change in price P and the lagged (i.e., the prior quarter)
cumulative number of adopters Qj;_1 in the scenario, where i de-
notes a specific price-change scenario and t is a quarter:

Ajr = Bo + B1P; + B2Qi—1 + &ie- (11)

Empirical Home Value

Integrated Model

Simple Error

e 450k
0
B 450k

Fig. 7. Spatial demographic validation for the integrated model. The large panel on the left shows the empirical adopter home-value distribution over space. The top (blue-scale)
panel shows simulated adopter home values. Adopter home values were interpolated using the Inverse Distance Weighted technique (see Supplementary Information). The lower
(divergent blue—red) panel shows simple error (Empirical — Simulated). Raster resolution is 30.5 m. Additional spatial validation metrics, RMSE, fuzzy numerical «, and " are
reported in Table 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Results of low-income solar rebate scenarios.

Table 5
Impact of rebate/price changes on the level of PV adoption.

Low-income solar rebates

Model Average Q2 2013 Median adopter Low-income
adopters home value ($) adopters
Integrated Model 2760.6 374,402 2.5%
+0.2$/Watt 2784.5 373,146 3.3%
+0.4$/Watt 27984 372,085 4.4%

A model with an interaction between P and Q was also
performed:

Aje = Bo + B1P; + B2Qir—1 + B3P x Qie—1 + &j¢- (12)

The pooled regression results combining all 10 scenarios
together are shown in Table 5. The simple model (Eq. (11)) shows
that on average holding the number of adopters constant, a $0.1/W
decrease in the price of solar PV for the customer increases adop-
tion by about 10 additional (i.e., over the base case) new adopters
each quarter in the study area.'” That is equivalent to a 8% increase
in adopters over the full simulation period compared to the base
case. In the interaction model (Eq. (12)), the estimate for price alone
reduces to about 5 additional new adopters for a $0.1/W price
decrease. The interaction effect between price and the installed
base is strong and significant (83 = 0.028). This suggests that rebate
changes impact adoption levels more strongly further down in the
solar program, when the installed base is more substantial. For
example, near the beginning of the program, when installed ca-
pacity is quite low, a $0.1/W price decrease increases quarterly
adoptions by an additional 5 adopters. But the impact is magnified
later in the program: when the installed base reaches 1000, a $0.1/
W price decrease leads to an additional 8 new adopters per quarter
(5 + 0.0028 x 1000), and the same effect at an installed base of
3000 is about an additional 13 new adopters per quarter. This
intuitively makes sense because in our model an agent needs to be
both socially and economically activated to adopt solar. Ceteris
paribus, since at a larger installed base non-adopter agents have
more opportunities to interact with existing adopters and hence
becoming socially activated, an increase in rebates will have more
impact because the more attractive economics now can operate on
a broader section of the non-adopters that is socially activated.

5. Conclusion

With the goal of developing models that are capable of robustly
representing the bounded rationality of individual decision-
makers, in this paper we presented the architecture of a
theoretically-based and empirically-driven agent-based model of
technology adoption, with an application to residential solar PV.
We focus on the theoretical and empirical aspects of model design,
setup, initialization, and validation. Our main emphasis was to
attempt to address two major concerns with the use of ABM in
human-technical systems: poor integration of data in model
initialization and validation, and ad hoc definitions of agent
behavioral rules. Toward that end, we overlaid multiple data
streams covering 2004—2013 including survey, program, appraisal
district, and LIDAR data to set up an empirical ABM bound closely to
the target system — namely, the adoption of residential solar PV at
the city scale. Driven by the Theory of Planned Behavior, agents'
adoption decisions are jointly determined by both attitudinal and

5 Note that the coefficient estimates correspond to a $1/W decrease in price. So to
get the effect for a $0.1/W the estimates need to be divided by 10.

Simple model Interaction effects

Coefficient - X

Estimate p-value Estimate p-value
Intercept: Bo -5.53 <0.0001 -1.28 0.059
Price: 4 97.44 <0.0001 50.58 <0.0001
Installed Base: (2 0.003 <0.0001 0.001 0.011
Interaction: (3 0.028 <0.0001
Adj R? 0.064 0.068

control beliefs. Both the attitudinal and control sub-models are
dynamic, with the key metrics evolving depending on market
conditions or via social interactions within agent networks.

For the control sub-model, we combined publicly available data
on home value, size of the home, tree-cover, and irradiance
(amount of sunlight) to develop the control variable representing
the agent's perception of whether she could afford solar or not,
when compared with a simple time-resolved payback calculation.
Using this metric, the simple rule: “An agent becomes economically
activated (able to install solar, given a favorable attitude toward the
technology) when control is greater than payback” was found to be
consistent with 86.6% of the real adopters in the empirical data. We
believe this is an encouraging result since it uses only publicly
available data and no fitting is involved in the selection of the
variables that go into developing the control metric.

We also presented a technique to generate population-wide
estimates for agent attitudes through regression of survey data
on population variables, generated from publicly available datasets.
We further improved these estimates using a kriging model, where
we take advantage of geographically correlated, but often unob-
servable variables such as education, familial composition, retire-
ment status, race, and political affiliation. Using only publicly
available data, this technique explained 36% of the variance in
weighted solar adopter attitudes regarding the financial, environ-
mental, and social aspects of solar ownership (as measured in a
survey). Since the approach of this technique is general, it can be
used for other applications, and it significantly decreases the time
and cost associated with population-scale empirical ABM by
reducing the need for expensive and time-consuming survey-based
data collection.

Further, in line with existing literature we find that small-world
social networks where locals are based on geography alone, even
when the relevant distance is derived from empirical patterns,
generated very high degree distributions. To achieve more realistic
degree distributions, we further refined these connections based on
home-value similarity. This approach affords two benefits. First, it
maintains proportionality: agents in the dense neighborhoods
identified in the eigenvector centrality comparison will still have
more connections than agents in sparse neighborhoods. Second,
unlike decreasing the degree distribution by choosing a smaller
radius, it allows for observed empirical patterns to be maintained.
In the case of solar adoption in the study area, this pattern was the
finding that the greatest correlation between solar owner locations
occurs at about 610 m radial neighborhoods.

The resulting Integrated Model was fit to the cumulative num-
ber of quarterly adoptions using six parameters. The model fit was
very good, especially considering the low proportion of solar
adopters in the population. Importantly, the model replicated the
major structural features in the empirical diffusion curve. However,
alone this fit would not be sufficient for establishing the model's
performance: indeed, a relevant criticism of empirical ABM is the
potential for over-fitting. To overcome this, the Integrated Model
was validated against three external criteria, using five different
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metrics. In other words, we cross-validated the model against five
other outcome variables independent of the fitting criteria. Finally,
we also compared predictions generated by the model to a portion
of data not used in fitting (the test set, Q3 2013 — Q4 2014). The
integrated model performed well in each of these validation cases,
outperforming other fitted models across the board.'®

Two policy applications tested in this paper show how the
developed ABM framework can be used as a virtual laboratory. First,
by simulating a low-income solar program within the context of the
fitted model, we provide evidence that rebate levels must be quite
high to have a large absolute impact on adoption of solar PV by low-
income households. Second, by simulating changes in the rebate-
level we find that the effect of a change in the rebate on PV adop-
tion scales with the installed base: early in the program when there
are few adopters, changes in PV rebate levels have modest impact,
while the impact is much greater later on because of social effects.

Overall, in this paper we have presented a comprehensive
approach for the integration of granular and overlapping data-
streams to ground ABM of energy technology adoption empiri-
cally, while building upon theoretical underpinnings. Further, in
order to address concerns regarding representativeness and over-
fitting in ABM generally, we have developed and applied a multi-
pronged external validation process to the integrated agent-based
model. This is important because only by thoroughly grounding
the model components in real-word data and through rigorous
validation can ABM generate relevant policy insights, predictions,
and emergent properties beyond the reach of conventional
models.
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